

第9章 单片机系统的并行扩展

学习要求

- ◆熟悉系统三总线的概念;
- ◆掌握程序存储器的扩展;
- ◆掌握外部数据存储器的扩展;
 - ◆掌握8255芯片扩展I/O接口的方法。

9.1 系统并行扩展技术

- 9.2 外部数据存储器的扩展方法
- 9.3 片内Flash存储器的编程
- 9.4 E2PROM的并行扩展
- 9.5 并行I/O芯片82C55的设计

9.1 系统并行扩展技术

9.1.1 系统并行扩展结构

单片机系统并行扩展结构见图9-1。

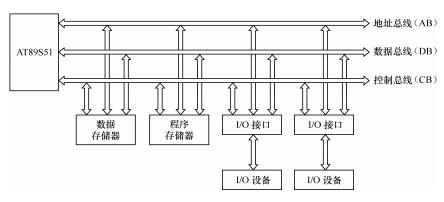


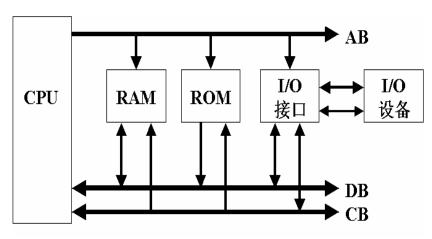
图9-1 单片机系统扩展结构

表9-1 AT89S5x 系列单片机片内的存储器资源

型 묵	片内闪烁存储器容量	片内 RAM 存储器容量		
AT89852	8 k B	256 B		
AT89853	12k B	256 B		
AT89S54	16k B	256B		
AT89855	20k B	256 B		

扩展 方法

- 1、根据单片机的型号和应用系统的要求 确定扩展存储器的类型、容量或I/O口的类型 包括芯片的类型、个数、容量、特点、要求
- 2、确定作程序存储器 /PSEN 数据存储器 /RD、/WR 混合存储器 /RD./PSEN
- 3、进行地址统筹,为各器件分配地址
- 4、根据位扩展、字扩展,确定片选方式
- 5、如何与三总线连接?


Ú

Ú

Ú

系统总线及总线构造

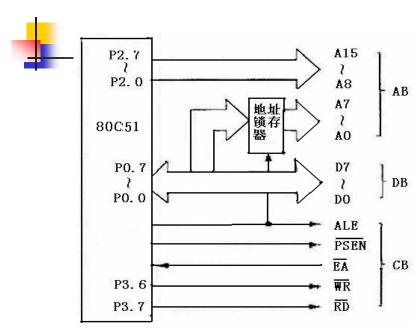


图8-2 8051系列单片微机的三总线结构

表4-4 P3各口线与专用功能

RXD(串行输入口) TXD(串行输出口)
TXD(串行输出口)
I .
INT0(外部中断0)
INT1(外部中断1)
T0(定时器0的外部输入)
T1(定时器1的外部输入)
WR(外部数据存储器写选通)
RD(外部数据存储器读选通)

P3各口线与专用功能

Ú

89S51单片机对外扩展三总线

Ú

如何来构造系统的三总线。

1. P0口作为低8位地址/数据总线

AT89S51受引脚数目限制, P0口既用作低8位地址总线, 又用作数据总线(分时复用),因此需增加一个8位地址锁存 器。AT89S51访问外部扩展的存储器单元或I/O接口寄存器 时,先发出低8位地址送地址锁存器锁存,锁存器输出作为系 统的低8位地址(A7~A0)。随后,P0口又作为数据总线口 (D7~D0),如图8-2所示。

2. P2口的口线作为高位地址线

P2口用作系统的**高8位地址线**,再加上地址锁存器提供的 低8位地址,便形成了系统完整的16位地址总线。

使单片机系统的寻址范围达到64KB。

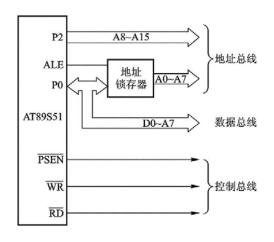


图8-2 AT89S51单片机扩展的片外三总线

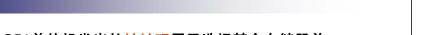
3. 控制信号线

除地址线和数据线外,还要有系统的控制总线。这些信号有的就是单片机引脚的第一功能信号,有的则是P3口第二功能信号。包括:

- (1) PSEN作为外扩程序存储器的读选通控制信号。
- (2) RD 和WR为外扩数据存储器和I/O的读、写选通控制信号。
 - (3) ALE作为P0口发出的低8位地址锁存控制信号。
 - (4) EA 为片内、片外程序存储器的选择控制信号。

可见,AT89S51的4个并行I/O口,由于系统扩展的需要,真正作为数字I/O用,就剩下P1和P3的部分口线了。

13


本节讨论**如何进行存储器空间的<mark>地址分配</mark>,并介绍用** 于输出低8位地址的常用的**地址锁存器**。

存储器地址空间分配

实际系统设计中,既需要扩展程序存储器,又需要扩展数据存储器,如何把片外的两个64KB地址空间分配给各个程序存储器、数据存储器芯片,使一个存储单元只对应一个地址,避免单片机发出一个地址时,同时访问两个单元,发生数据冲突。这就是存储器地址空间分配问题。

1

AT89S51单片机发出的地址码用于选择某个存储器单元,外扩多片存储器芯片中,单片机必须进行两种选择:一是选中该存储器芯片,这称为"片选",未被选中的芯片不能被访问。二是在"片选"的基础上再根据单片机发出的地址码来对"选中"芯片的某一单元进行访问,即"单元选择"。

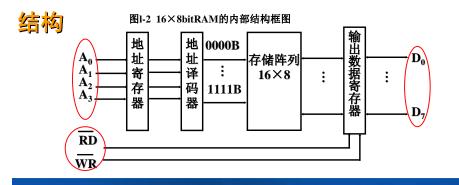
为实现片选,存储器芯片都有片选引脚。同时也都有多条地址线引脚,以便进行单元选择。注意,"片选"和"单元选择"都是单片机通过地址线一次发出的地址信号来完成选择。

通常把单片机系统的地址线笼统地分为低位地址线和高位地址线,"片选"都是使用高位地址线。实际上,16条地址线中的高、低位地址线的数目并不是固定的,只是习惯上把用于"单元选择"的地址线,都称为低位地址线,其余的为高位地址线。

常用的存储器地址空间<mark>分配方法有两种:线性选择法</mark>(简称 线选法)和<mark>地址译码法</mark>(简称译码法),下面介绍。

1. 线选法

是直接利用系统的某一高位地址线作为存储器芯片 (或I/O接口芯片)的"片选"控制信号。为此,只 需要把用到的高位地址线与存储器芯片的"片选" 端直接连接即可。


存储器容量:

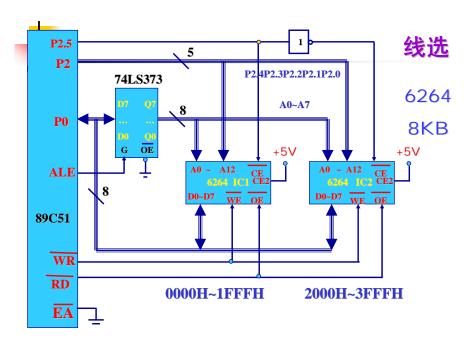
是指一片存储器最多能够存储多少个单位信息,二进制信息单位多用字节来表示。

在标注存储器容量时,经常同时标出存储单元的数目和位数。

地址线条数决定

存储器芯片容量=单元数×数据线位数

ROM和RAM芯片均有分四组引脚线: (ROM另有特殊的引脚线)


- 1、地址线 传送存储器的地址码,其根数决定存储单元个数即字数
- 2、<u>数据线</u> 传送对某一单元进行读/写的数据,双向 决定一个单元内存储二进制数的位数,即字长
- 3、控制线 传送读/写控制信号,以控制读/写操作
- 4、电源线 +5V 和GND线

例:

intel 2114芯片容量=1kB× 4位/片 62256芯片容量=32KB× 8位/片

215=32KB,即15条地址线 数据线条数:8条

2864芯片容量= 8KB× 8位/片 ?

Ú

地址空间--地址段不唯一

Ad 5	A14	A13	A12	A11	A10	A9	A8	A7~A0	存储器
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0	
X	Х	0	0	0	0	0	0	0~0	
	000B 010B		000	00Н 、	4000H	[、 <mark>800</mark>	0H 、 (С000Н	IC1
			1	1	1	1	1	1~1	
	100B		4177			0.00		DEEDII	
	11 <mark>0</mark> B		IFF	TH,	SFFFH	l, yrı	FFH.	DFFFH	
Х	Χ	1	0	0	0	0	0	0~0	
	001B			00Н、	6000H	. A00	0Н, Е	Е000Н	IC2
	011B		1	1	1	1	1	1~1	
	101B		200		. (a (a (a)	DE			1
	11 <mark>1</mark> B		3FF	rh.	/FFFH	, BF	rrh,	FFFFH	

片外剩2根线,每片有4段地址段

Ú

线洗法优点是电路简单,不需要另外增加地址译码器硬 件电路,体积小,成本低。缺点是可寻址的芯片数目受到 限制。另外,地址空间不连续,每个存储单元的地址不唯 一,这会给程序设计带来不便,只适用于外扩芯片数目不 多的单片机系统的存储器扩展。

2. 译码法

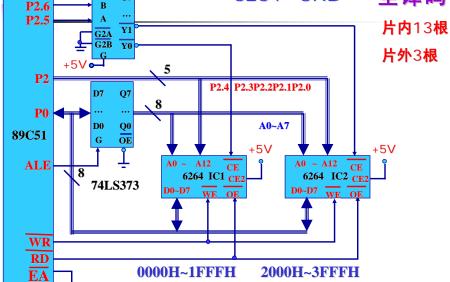
使用译码器对AT89S51单片机的高位地址进行译码, 译码输出作为存储器芯片的片选信号。这种方法能够有效 地利用存储器空间,适用于多芯片的存储器扩展。常用的 译码器芯片有74LS138(3线-8线译码器)、74LS139 (双2线-4线译码器)和74LS154(4线-16线译码器)。

若全部高位地址线都参加译码, 称为全译码: 若仅部分 高位地址线参加译码,称为部分译码。部分译码存在着部 分存储器地址空间相重叠的情况。

下面介绍常用的译码器芯片。

(1) 74LS138

3线-8线译码器,有3个数据输入端,经译码产生8种状 态。引脚如图8-3所示,真值表见表8-1。由表8-1可见, 当译码器的输入为某一固定编码时,其输出仅有一个固定 的引脚输出为低电平,其余的为高电平。输出为低电平的 引脚就作为某一存储器芯片的片选信号。



P2.7 P2.6 P2.6 B 74LS138 6264 8KB **全译码**

U

Ú

全译码——各芯片地址惟一

A15	A14	A13	A12	A11	A10	A9	A8	A7~A0	存储器
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0	
С	В	Α	1 2.4	1 2.0	1 2.2	1 2.1	1 2.0		
0	0	0	0	0	0	0	0	0~0	
000B				0000Н					
		_	1	1	1	1	1	1~1	
Y(0—C :	E			1F]	FFH			
0	0	1	0	0	0	0	0	0~0	
001B <u>Y1</u> — <u>CE</u>			2000Н						IC2
			1	1	1	1	1	1~1]
					3Fl	FFH			

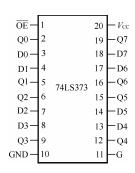
3——8译码器的其它输出端代表的地址是什么?

线选法与译码法比较

- **ॐ 线选法选址**
 - ▶电路连接简单
 - ▶地址空间利用率低
 - ▶地址空间重叠严重
- 🏂 译码法选址
 - > 采用译码器电路
 - ▶ 部分译码仍有重叠的地址空间
 - 全译码地址空间利用率高,地址唯一

9.1.3 外部地址锁存器

AT89S51单片机受引脚数的限制,P0口兼用数据线和低8位地址,为了将它们分离出来,需要在单片机外部增加地址锁存器。目前,常用的地址锁存器芯片有74LS373、74LS573等。



1. 锁存器74LS373

带有三态门的8D锁存器,其引脚见图9-6,内部结构如图9-7所示。

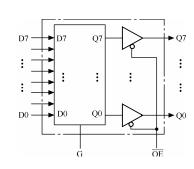


图9-6 锁存器74LS373的引脚

图9-7 74LS373的内部结构

74LS373引脚说明:

- D7~D0—8位数据输入线。
- Q7~Q0-8位数据输出线。
- G—数据输入锁存选通信号。当加到该引脚的信号为高电平时,外部数据选通到内部锁存器,负跳变时,数据锁存到锁存器中。
- ●0E*─数据输出允许信号,低电平有效。当该信号为低电平时,三态门打开,锁存器中数据输出到数据输出线。当该信号为高电平时,输出线为高阻态。

74LS373锁存器功能见表9-4。

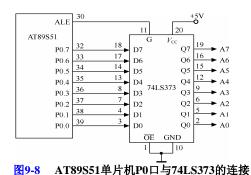


表9-4 74LS373功能表

ŌĒ	G	D	Q	
0	1	1	1	
0	1	0	0	
0	0	X	不变	
1	×	X	高阻态	

AT89S51单片机与74LS373锁存器的连接如图9-8所示。

33 **U**

2. 锁存器74LS573

带三态门的8D锁存器,功能及内部结构与74LS373完全一样,只是其引脚排列与74LS373不同,图9-9为74LS573引脚图。

由图9-9,与74LS373相比,74LS573输入D端和输出的Q端依次排列在 芯片两侧,为绘制印制电路板提供较大方便。

74LS573引脚说明如下。

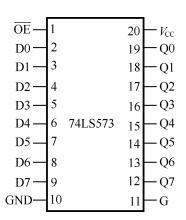
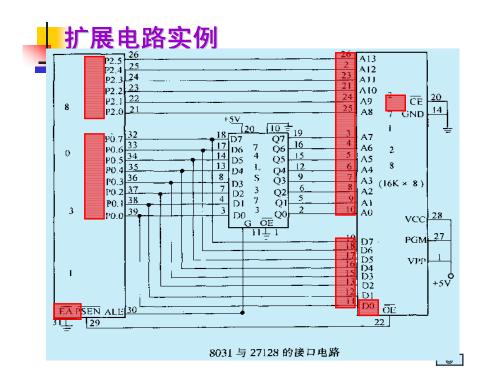
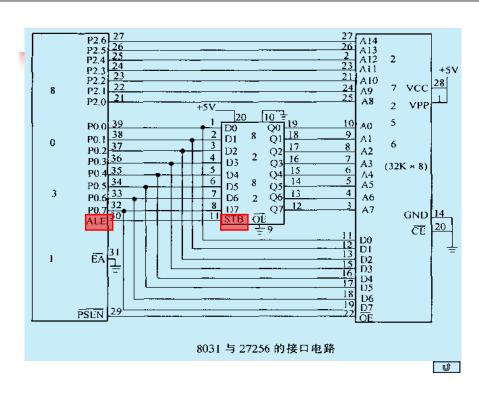



图9-9 锁存器74LS573的引脚

- D7~D0-8位数据输入线。
- Q7~Q0—8位数据输出线。
- G—数据输入锁存选通,该引脚与74LS373的G端功能相同。
- 0E*—数据输出允许,低电平有效。当低电平时,三态门打开,锁存器中数据输出到数据输出线。当该信号为高电平时,输出线为高阻态。



地址空间——地址段不唯一

A15	A14	A13	A12	A11	A10	A9	8A	A7~A0	存储器
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0	
Χ	Χ	0	0	0	0	0	0	0~0	
00B 01B			000	он 、	4000H	[、 <mark>800</mark>	0H 、0	С000Н	IC
		1	1	1	1	1	1	1~1	
10B 11B 3FFFH、7FFFH、BFFFH、FFFFH									

片外剩2根线,每片有4段地址段

Ú

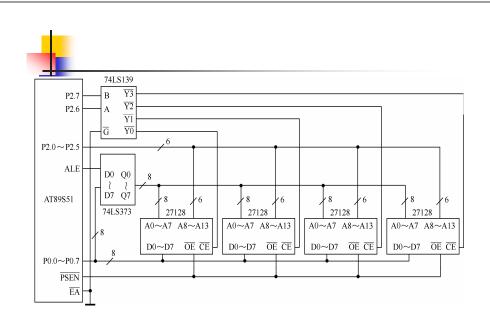
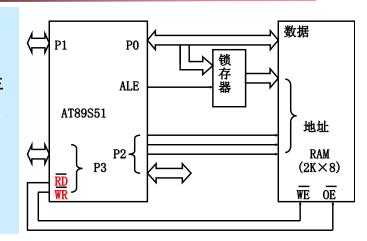


图9-12 AT89S51单片机与4片27128 EPROM的接口电路

- 9.1 系统并行扩展技术
- 9.2 外部数据存储器的扩展方法
- 9.3 片内Flash存储器的编程
- 9.4 E2PROM的并行扩展
- 9.5 并行I/O芯片82C55的设计



9.2 外部数据存储器的扩展方法

PO**口为** RAM**的复用地** 址/**数据总线**,

P2**口的三** 根线用于对 RAM进行页面 寻址。

在对外部 RAM读/写期 间,CPU产生 /RD/WR信号。

Ú

Ú

9.2.1 常用的静态RAM(SRAM)芯片

单片机系统中常用RAM典型芯片有6116(2KB)、6264(8KB)、 62128(16KB)、62256(32KB)。

都单一+5V电源供电,双列直插,6116为24引脚,6264、62128、62256为28引脚。RAM芯片引脚见图9-10。

各引脚功能如下。

- ●A0~A14—地址输入线。
- ●D0~D7—双向三态数据线。
- ●CE*—片选信号输入线,低电平有效。对于6264芯片,当24脚(CS) 为高电平且为低电平时才选中该片。
- OE*—读选通信号输入线,低电平有效。
- WE*—写允许信号输入线,低电平有效。
- VCC—工作电源+5V。
- GND—地

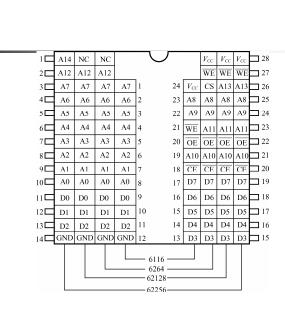
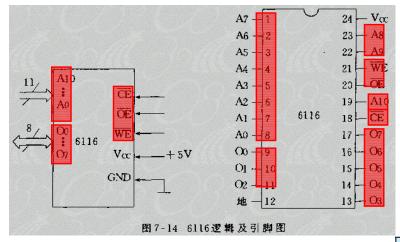
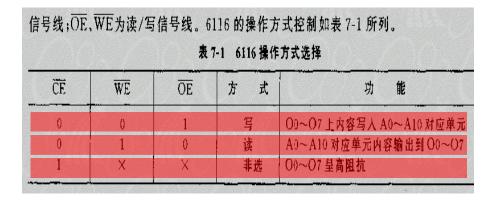
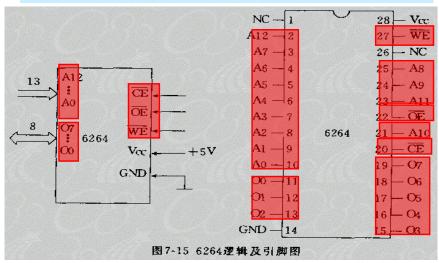



图9-10 常用RAM引脚

常用的RAM芯片


在89S51应用系统中,最常用的静态随机存取存储器RAM电路有 $6116(2K\times8)$ 和 $6264(8K\times8)$ 。

Ú


常用的RAM芯片

静态随机存取存储器6116(2K×8)和6264(8K×8)。

常用的RAM芯片

静态随机存取存储器6264(8K×8)。

静态随机存取存储器6264(8K×8)。

表 7-2 6264 操作方式选择								
Œ	WE	ŌĒ	方 式	说明				
0	0	1	写	O0~O7 上信息写入 A0~A12 上地址对应单元				
0	1	0	读	A0~A12上地址对应单元内容输出到 O0~O7				
	Χ	X	非选	00~07 星高阻抗				

9.2.2 并行扩展数据存储器的设计

访问外扩展的数据存储器,要由P2口提供高8位地址,P0口提供低8位地址和8位双向数据总线。AT89S51单片机对片外RAM的读和写由AT89S51的(P3.7)和(P3.6)信号控制,片选端由地址译码器的译码输出控制。因此,进行接口设计时,主要解决地址分配、数据线和控制信号线的连接。如果读/写速度要求较高,还要考虑单片机与RAM的读/写速度匹配问题。

图9-13所示为用线选法扩展外部数据存储器的电路。数据存储器选用 6264,该芯片地址线为A0~A12,故AT89S51单片机剩余地址线为3 条。用线选法可扩展3片6264,3片6264的存储器空间如表9-6所示。

Ú

Ú

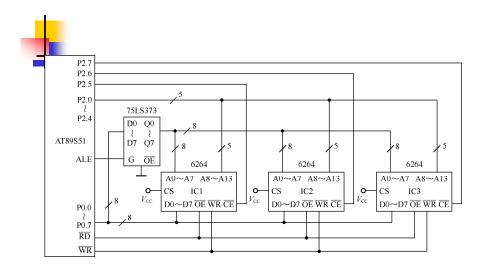


图9-13 线选法扩展外部数据存储器电路图

表 9-6 3片 6264 芯片对应的存储空间表

P2.7	P2.6	P2.5	选中芯片	地址范围	存储容量
1	1	0	IC1	C000H~DFFFH	8KB
1	0	1	IC2	A000H~BFFFH	8KB
0	1	1	IC3	6000H~7FFFH	8KB

用译码法扩展外部数据存储器的接口电路如图9-14所示。图中数据存储器选用62128,该芯片地址线为A0~A13,这样,AT89S51剩余地址线为两条,采用2-4译码器可扩展4片62128。各62128芯片的地址范围如表9-7所示。

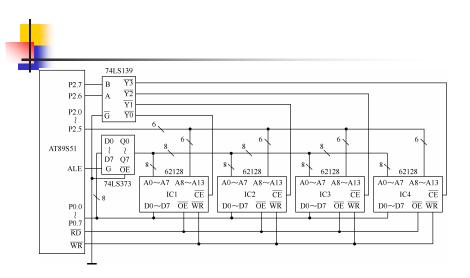


图9-14 译码法扩展外部数据存储器电路图

表9-7 各62128芯片的地址空间分配

2-4 译码 P2.7	器输入 P2.6	2-4 译码器 有效输出	选中芯片	地址范围	存储容量
0	0	<u>¥0</u>	IC1	0000H~3FFFH	16KB
0	1	₹1	IC2	4000H~7FFFH	16KB
1	0	₹2	IC3	8000H~BFFFH	16KB
1	1	₹3	IC4	C000H~FFFFH	16KB

【例9-1】编写程序将片外数据存储器中的0x5000~0x50FF的256个单元全部清"0"。参考程序:

- 9.1 系统并行扩展技术
- 9.2 外部数据存储器的扩展方法
- 9.3 片内Flash存储器的编程
- 9.4 E2PROM的并行扩展
- 9.5 并行I/O芯片82C55的设计

9.3 片内Flash存储器的编程

程序存储器具有非易失性,在电源关断后,存储器仍能保存程序,并且程序存储器中的信息一旦写入,就不能随意更改,特别是不能在程序运行过程中写入新的内容,故称为只读存储器(ROM)。

本小节只讨论如何把已调试完毕的程序代码写入到AT89S51的片内 Flash存储器中,即对Flash存储器的编程问题。

AT89S51单片机片内4KB Flash存储器的基本特性如下:

- (1) 可循环写入/擦除1 000次;
- (2) 存储器数据保存时间为10年;
- (3) 具有3级加密保护。

9.3.1 使用通用编程器的程序写入

通用编程器一般通过串行口或USB口与PC机相连,并配有相应的驱动软件。编程器通过USB口与PC机通讯,可进行芯片型号自动判别,编程过程中的擦除、烧写、校验等各种操作。

编程器供电部分由USB端口的5V电源提供,省去笨重的外接电源并加入USB接口保护电路,即自恢复保险丝,不怕操作短路。

编程器的驱动软件界面友好,菜单、工具栏、快捷键齐全,具有编程、读取、校验、空检查、擦除、Flash存储器加密等功能。

9.3.2 使用下载线的ISP编程

AT89S5x系列单片机支持对片内Flash存储器在线编程(ISP),即PC机直接通过下载线向单片机片内Flash存储器写入程序代码。编程完毕的片内Flash存储器也可用ISP方式擦除或再编程。

ISP下载线按与PC机的连接分为三种类型: 串口型、并口型以及USB型,可自行制作,也可在电子市场购买。常用的为USB型,并且接口标准为ATMEL公司的标准,10引脚IDC,如图9-17所示。

Ú

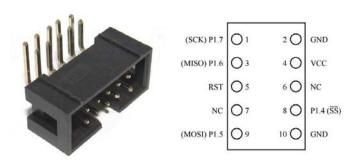


图9-17 IDC端口的实物图以及端口的定义

- 9.1 系统并行扩展技术
- 9.2 外部数据存储器的扩展方法
- 9.3 片内Flash存储器的编程
- 9.4 E2PROM的并行扩展
- 9.5 并行I/O芯片82C55的设计

9.4 E2PROM的并行扩展

→ 在以单片机为核心的智能仪器仪表、工业监控等应用系统中,对某些 状态参数数据,不仅要求能够在线修改保存,而且断电后能保持。断电 数据的保护可采用电可擦除写入的存储器E2PROM,其突出优点是能够 在线擦除和改写,并且,操作简单,可字节写入,非常适合用作运行过 程中频繁改写某些非易失的小数据量的存储器。

E2PROM有并行和串行之分,并行E2PROM的速度比串行的快,容量大。串行E2PROM的扩展将在下一章介绍。本节只介绍AT89S51单片机扩展并行E2PROM芯片2864的设计。

9.4.1 并行E2PROM芯片简介

常见的并行E2PROM芯片有2816/2816A, 2817/2817A, 2864A等。这些芯片的引脚如图9-18所示。

Ú

Ú

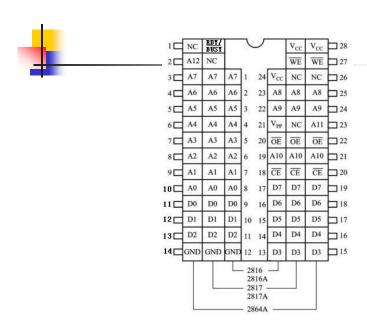


图9-18 常见的并行E2PROM引脚图

9.4.2 AT89S51单片机扩展E2PROM AT2864的设计

2864A与AT89S51单片机的接口电路如图9-19所示。2864A的存储容量为8K字节,与同容量的静态RAM 6264的引脚是兼容的,2864A的片选端由高位地址线P2.7(A15)来控制。

单片机对2864A的读写非常方便,在单一+5V电压下写入新数据即覆盖了旧的数据,类似于对RAM的读写操作,2864A典型的读出数据时间为200~350ns,但是字节编程写入时间为10ms~15ms,要比对RAM写入时间长许多。

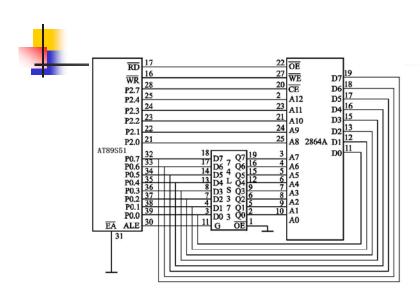
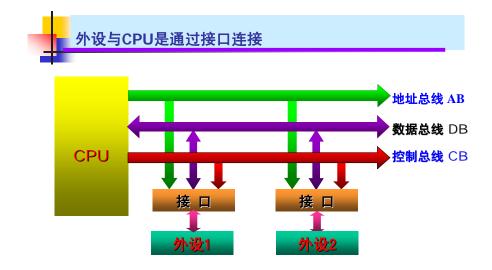


图9-19 2864A与AT89S51单片机的接口电路

- 9.1 系统并行扩展技术
- 9.2 外部数据存储器的扩展方法
- 9.3 片内Flash存储器的编程
- 9.4 E2PROM的并行扩展
- 9.5 并行I/O芯片82C55的设计

Ú

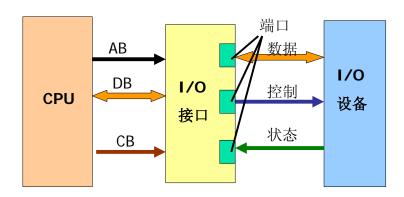


9.5 并行I/O芯片82C55的设计

AT89S51本身有4个通用的并行I/O口P0~P3,但真正用作通用I/O口线的只有P1口和P3口某些位线。

当AT89S51本身4个并行I/O口不够用时,需进行外部I/O接口扩展。本 节介绍AT89S51单片机扩展可编程并行I/O接口芯片82C55的设计。

此外还介绍使用廉价的74LSTTL芯片扩展并行I/O接口以及使用AT89S51串行口来扩展并行I/O口的设计。



I/O接口和 I/O端口

- 1. I/O接口(Interface)是一电子电路(以IC芯片或接口板形式出现),其内有若干专用寄存器和相应的控制逻辑电路构成。它是CPU和I/O设备之间交换信息的媒介和桥梁。
- 2. I/O端口(Port)是 I/O接口中可通过编程实现寻址并进行读写的寄存器。CPU 与外设之间交换信息具体是通过I/O端口来进行的。

CPU与外设通过I/O接口通信示意图:

Ú

9.5.2 I/O端口的编址方式

₾ 独立编址

☞/采用一套与存储器不同的地址,利用/MREQ(存储器请求)和/IORQ(输入输出请求), CPU 有专门的I/O指令如: IN, OUT

₾ 统一编址

✔ I/O端口与内存储器采用一套地址,完全象存储器单元一样处理,使用访问存储器的指令。
如: movx 类指令

他 MCS51系列采用统一编址

- ↔ 片内RAM 与PO~P3均用MOV指令
- 於 片外RAM与外扩口I/O口均用MOVX指令

9.5.3 I/O数据传输的方式

- 同步传输 (无条件传输)
- 查询传输
- 中断传输

Ú

4

1 无条件传送方式(又称同步传送)

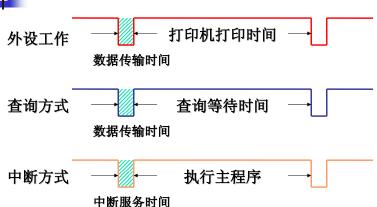
- ◆ 应用于定时为已知的且 固定不变的低速I/O
- ◆ 无需等待的高速I/O

2 查询式传送方式,又称条件传送——异步传送

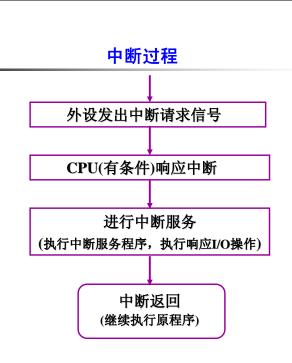
- ★ CPU查询外设状态信息(Ready, Busy),条件 満足时,进行数据传送
- **४** 程序简单
- ※ 高速CPU查询低速外设
- **४** 浪费CPU时间,效率低

Ú

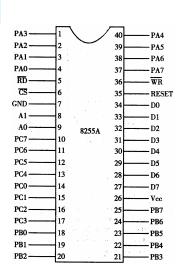
Ú

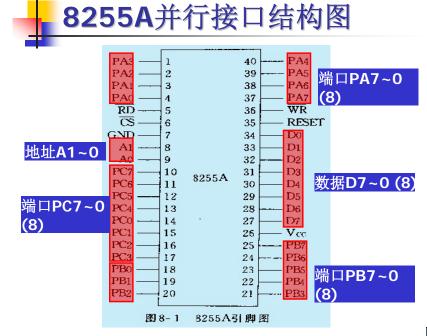


3 中断传送方式


- → 中断: 要求进行输入、输出的外设,发出就绪信号给 CPU,作为中断请求,打断CPU正在进行的工作,即中 断CPU正在执行的程序。
- **४** 中断过程
- Y 中断方式与查询方式比较
 - # 提高了CPU的效率
 - # CPU与外设可并行工作
 - 发 CPU可及时响应外部事件

中断方式与查询方式CPU占用时间比较

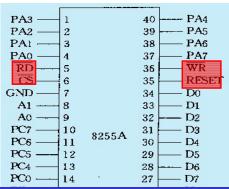



9.5.4 并行接口8255A

- Intel公司生产的可编程并行I/O接口芯片
- 含3个独立的8位并行输入/输出端口,各端口均具 有数据的控制和锁存能力
- 可通过编程,设置各端口工作在某一确定状态下。

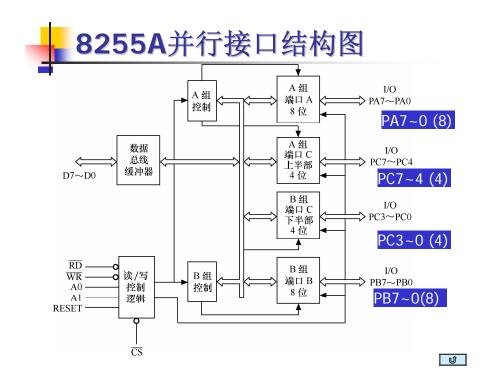
1.8255芯片介绍 (1) 引脚

- D7~D0: 与51双向数据传送
- **CS**: 片选信号
- RD: 读选通
- WR: 写选通
- PA7 ~PA0: A□)并
- PB7 ~PB0: B□ \ 行
- PC7 ~PC0: C□ I/O
- A1、A0: 端口选择



Ú

8255A并行接口结构图


/CS: 片选信号线, 低电平有效, 表示芯片被选中;

/RD: 读信号线,低电平有效,控制数据读出;

/WR: 写信号线, 低电平有效, 控制数据写入;

RESET: 复位信号线, 高电平有效;

Ú

结构

B组 {端口B 端口C的低4位

8255A并行接口结构图 外设接口 A口: 具有8位数据输出锁存。 缓冲器和一个8位数据输入锁存 A组 PA7~0 (8) 端口 器; A(8) B口:具有一个8位数据输入/输 A组端 出锁存/缓冲器和一个8位数据 >PC7~4 (4) 口C上 半部(4) 输入缓冲器; C口: 具有一个8位数据输出锁 B组端 PC3~0 (4) 存/缓冲器和一个8位数据输入 口C下 半部(4) 缓冲器(不锁存)。 三个端口中A口和B口总是作为 B组 端口 PB7~4 (4) 数据输入 / 输出端口,C口有时 B(8) 作为控制信号和状态信号的输入 /输出端口。 Ú

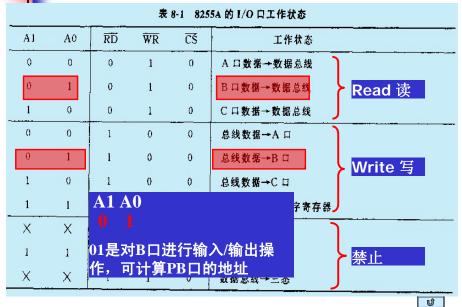
1

8255A的读/写控制

读/写控制逻辑电路输入的控制信号有/RD、/WR、RESET和A1、A0。它根据这些信号控制I/O口及控制寄存器的读/写操作。

其中地址线AI、A0用来选择I/O口和控制字寄存器,与读/写控制信号/RD和/WR构成各种工作状态,如表9-1所示。

Ú


Û

♣ 8255A I/O口工作状态

					11 / 10				
表 8-1 8255A 的 I/O 口工作状态									
A1	A0	RD	WR	₹Š	工作状态				
0	0	0	1	0	A □数据→数据总线				
0	1	0	1	0	B□数据→数据总线 Read 读				
1	0	0	1	0	C□数据→数据总线				
()	0	1	0	0	总线数据→A 口				
0	1	1	0	0	总线数据→B口 Write 写				
1	0	1	0	0	总线数据→C 口				
_ 1	1	A1.	A0		寄存器				
X	X	0							
1	1	00是	00是对A口进行输入/输出操 禁止						
×	X	作,	作,可计算PA口的地址						

8255A I/O口工作状态

■ 8255A I/O口工作状态

表 8-1 8255A 的 I/O 口工作状态									
A1	A0	RD	WR	<u>₹</u>	工作状态				
0	0	0	1	0	A □数据→数据总线				
0	1	0	1	0	B口数据→数据总线 Read 读				
1	0	0	1	0	C口数据→数据总线				
0	0	1	0	0	总线数据→A 口				
0	1	1	0	0	总线数据→B 口 Write 写				
1	0	1	0	0	总线数据→C□				
_ 1	1	A1	A0		寄存器				
X	X	1							
1	1	01是对B口进行输入/输出操 禁止							
X	X	作,可计算PB口的地址							
- Control					U				

8255A I/O口工作状态 表 8-1 8255A 的 I/O 口工作状态 A1 \overline{WR} CS 工作状态 A □数据→数据总线 A1 A0 Read 读_ 数据总线 数据总线 11是对8255A的控制字寄存器 进行,可计算8255A控制字寄 Write 写 存器的地址 尽线数据→C□ 总线数据→控制字寄存: X X X 数据总线→三态 非法状态 禁止 Χ 数据总线→三杰 1 Ú

9.5.5 工作方式控制字及C口控制字 (1) 基本工作方式

- 方式0,基本输入输出:
 - 没有固定的信号联系线,仅完成无条件的数据传输
- 方式1,选通输入输出:
 - A、B为单纯的数据口,C口为联络信号的传输。
- 方式2,双向传送(仅PA口):
 - 双向的I/O总线
- 工作方式的选择由CPU送出的控制字寄存器 选择

方式0:

- 相当于三个独立的8位简单接口
- 各端口既可设置为输入口,也可设置为输出口,但不能同时实现输入及输出
- C端口可以是一个8位的简单接口,也可以 分为两个独立的4位端口
- 常用于连接简单外设(适于无条件或查询 方式)

方式1:

- 利用一组选通控制信号控制A端口和B端口的 数据输入输出
- A口、B口作输入或输出口,C口的部分位用作 选通控制信号
- **A**口、**B**口在作为<u>输入</u>和<u>输出</u>时的选通信号不同

方式1的应用:

- 方式1主要用于中断控制方式下的输入输出
- C口的8位除用作选通信号外,其余位可工作 于方式0下,作为输入或输出口

Ú

Ú

方式2:

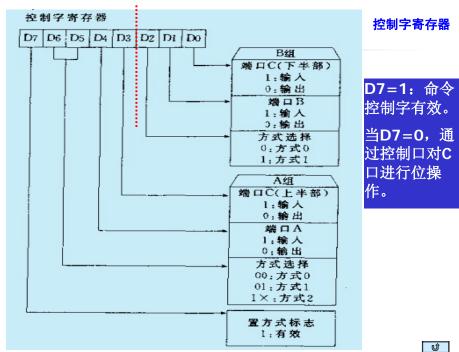
- 双向输入输出方式-----可以既作为输入口, 又作为输出口
- 只有A端口可工作在方式2下

方式2的应用:

- 可使A端口作为双向端口所有
- 用于中断控制方式
- 当A口工作于方式2时,B口可工作于方式1 (此时C口的所有位都用作选通控制信号的输 入输出),也可工作于方式0(此时C口的剩 余位也可工作于方式0)

(2)方式控制字及状态字

- 利用软件编程确定3个端口工作于何种方式 下:
- C端口可以按位操作。当其工作于方式0下且 作为输出口时,一般需要对作为输出的位设 置初始状态(即初始化)



(2)方式控制字与状态字格式

- 控制字-----确定3个端口的工作方式
- 状态字------确定C口某一位的初始状态

Ú

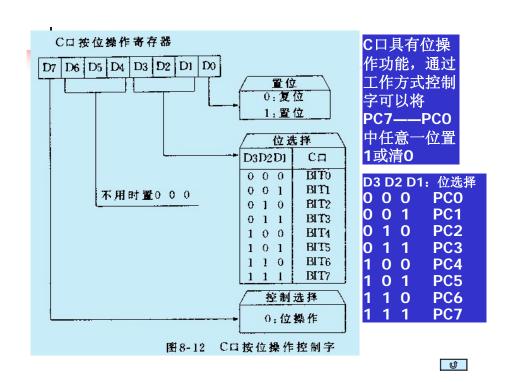
Ú

(3) C口按位置位/复位控制字

 $0 \times \times \times D3 D2 D1 D0$

■利用C口置位/复位 控制字可以很方便地 使C口8位中的任一 位清0或置1.

■ D7位为该控制字的 标志位, D7=0为C口 置位/复位控制字。


- D3D2	$2D\hat{1}$	C口位选择
0.0	0	PC0
0.0	1	PC1
0 1	0	PC2
0 1	旦	PC3
10	0	PC4
10	i _	PC5
11	0	PC6
11	1	PC7

置复位控制

复位

置 位

D0

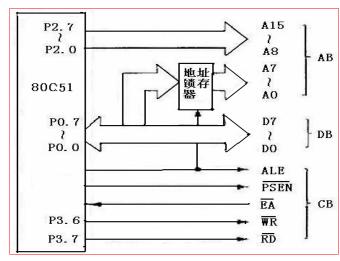
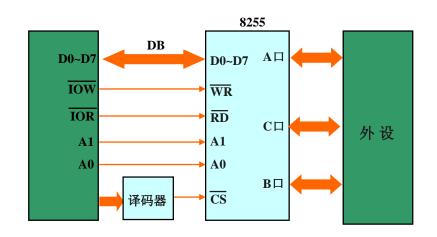



图 89S51系列单片微机的三总线结构

Ú

8255与系统的连接示意图

编程要点

- 初始化时要设置8255的工作方式及端口的输入输出
- 端口地址的确定(根据电路原理图)

Ú

例1:确定8255A的控制字

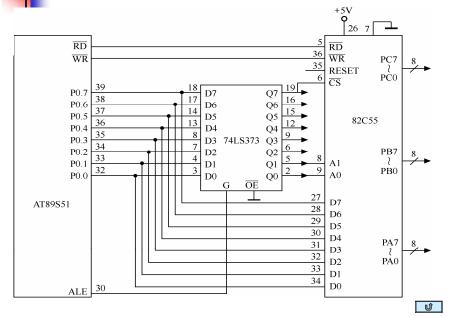
- 将8255A确定为
 - A口0方式输入,
 - B口方式1输出,
 - C口上半部分(PC7~PC4)输出
 - C口下半部分(PC3~PC0)输入

⇒请大家对照P205

		1	0	0	1	0	1	0	1
--	--	---	---	---	---	---	---	---	---

Ú

(2) 端口地址的确定


■ 假设没有用到的位为1

P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0		
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	地址	端口
1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	FF7CH	A
1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	FF7DH	В
1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	FF7EH	C
1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	FF7FH	控制口

P0.7为片选信号, 低有效 P0.7=0

A1 A0: 端口选择 $A\square$ $\mathbf{B}\square$ $C\square$

9.5.7 89C51与8255的接口

3. 软件编程

在实际应用设计中,须根据外设类型选择82C55操作方式,并在初始化 程序中把相应控制字写入控制口。下面介绍对82C55的编程。

【例9-6】根据图9-29, 要求82C55的PC口工作在方式0, 并从PC5脚输出 连续的方波信号,频率为500Hz,参考程序:

#include <reg51.h> #include <absacc.h> #define PA8255 XBYTE[0xff7c] #define PB8255 XBYTE[0xff7d] #define PC8255 XBYTE[0xff7e] #define COM8255 XBYTE[0xff7f] #define uchar unsigned char

//0xff7c为82C55PA端口地址 //0xff7d为82C55PB端口地址 //0xff7e为82C55PC端口地址 //0xff7f为82C55控制端口地址

```
extern void delay_1000us ();
void init8255(void)
                   //工作方式控制字写入控制寄存器
   COM8255=0x85;
void main(void)
   init8255(void)
   for(;;)
      COM8255=0x0b;
                                 //PC5脚为高电平
      delay_1000us ();
                                 //高电平持续1000s
      COM8255=0x0a;
                                 //PC5脚为低电平
                                 //低电平持续1000s
      delay_1000us ();
  }
```

109